The coordinate of this point is determined from (26), and is independent of the time. In particular, for a sphere

T f3g+n + 8 AnEs/n __ g n/(3g+3) . (32
=[( n+3 )(K(3g+"+6)/ﬂ_1 I<n—g<2)y )

and for a cylinder

r (g +2) (W™ — 1) n/(2g+2)
T T | T p@erem_g

(I<n—g<2). (33)

It is seen that the coordinates (32) and (33) differ insignificantly from the corresponding coordinates for inter-
section of the elastic and steady distribution diagrams, and for n — « agree exactly withthe coordinates for intersec-
tion of the elastic stress intensity distribution with the ideal plastic distribution. In combination with (30) and (31),

this result affords a possibility of involving an electronic computer (or using it minimally) to compute the stress—
strain state of high-pressure vessels by means of (8) and (9) even in the case 8 # 1 as an approximate estimate
during design. The lower bound of the fracture time is determined from (29) or from the expression t4 =tk pro-
posed in [5]. In combination with (30), (31) and (29), the relationships (8) and (9) yield the exact solution for

B =1-
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ST. VENANT PRINCIPLE FOR STRONGLY ANISOTROPIC
ELASTIC MEDIA

Yu. A. Bogan : UDC 539.1

The presence of strong anisotropy in modern composites (consequently, large parameters are present in
the generalized Hooke's law for the average stresses) resultsinlimit models being characterized by the pheno-
menon of "propagation" of the stress state [1].

In this connection, the question occurs asto what degree does the St. Venant principle remain valid for
media with inextensible fibers? As is shown below, exponentiality decreasing the potential strain energy with
distance from the domain of self-equilibrated load application occurs [2] for media with inextensible fibers un-
der definite conditions; however, it is hence generally impossible to make a deduction about the exponentiality
of the damping with distance from the loaded section.

Therefore, the St, Venant principle must be formulated in a weakened, integral form without local estimates
of the stréss state of the structure for the application of the principle to media with inextensible fibers.

1. Without pinpointing any specific model of alinearly elastic composite, let us take the generalized Hooke's
law relationship in the form

oy = Apeg + Apey, Oy = Aty + Agtn, Tz = Gvn, (1.1)
where £ =xcosa=y sina;n=—xsin @ + y cos @;0=a <7 is some constant angle, and (x, y) are cartesian or-
thogonal coordinates. Let us put _

e = AyGY, dyy = AypGY, d = ApGt,

EE = 0t G, on = on G, T—E’ﬂ = Tt Gt

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 164-169,
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and let us retain the previous notation for the dimensionless stresses henceforth. Let us assume that e «1,
This case corresponds to a single directed composite with very stiff fibers parallel to the £ axis. Passing to
the limit in (1.1) as € —+0, we obtain the governing relationships

Op = 1 + digey , Og = den, Tgn = Yin, & = 0. (1.2)

in which (1.2) q;=qy(£, n) is the Lagrange multiplier corresponding tothe kinematic constraint of inextensibility -
along the £ axis. For € = 0 the equation for the stress function w(#, ) has the following form in the absence of
volume forces

de?d*w/ont + (d — &%)d'w/0E%0m 2 + *w/ott = 0, {1.3)

where ¢ =d§2+2d12. In the limit as € —+0 equation (1.3) goes over into the equation
d-104wl0Et + FwloE%n?t = 0. (1.4)

In constrast to (1.3), equation (1.4) is not already elliptic but composite [3] with a double family of real charac-
teristics n = const.

2. Let us consider the question of the influence of strong anisotropy on the "rate" of stress attenuation in
an orthotropic half-strip. By using numerical analysis it was shown by some examples in [4] that for a quite
stiff armature parallel to the long sides, the stresses attenuate considerably more slowly with distance from
the end face than in the isotropic case. The problem of a half-strip is of interest in connection with the following
circumstances: Itis a model for the St, Venant principle; the solution of the problem of a half-strip is the
boundary-layer component in the asymptotic of the first boundary-value problem of elasticity theory for a rec-
tangular domain when one of its measurements is small [5], and therefore permits clarification of the question
about the influence of the domain size on the stress attenuation "rate" in the boundary layer under strong ahiso-
tropy of the material. The answer to the last question is of practical value, In fact, if the average mechanical
characteristics of a unidirectional composite must be measured, then specimens must be selected sufficiently
long in order to eliminate the influence of the slowly attenuating boundary layer.

Let Q={ (x, y), |y| = h,0=x < + =} be an elastic half-strip, and let the orthotropy axes be parallel to
the sides of the half-strip. For x=0 and y =+ h let us pose the following boundary conditions:

0x|x==0 = pl(y)’ Txylx=0 = Pz(y), Gy’y-——-j—_h =0, Txy|y=ih =0, (2.1)

Under the assumption that the load is self-equilibrated and the strain potential energy is finite [6], the boundary-
value problem (1.3) and (2.1) has a unique solution which decreases exponentially at infinity. The solution of the
boundary-value problem (1.3) and (2.1) is represented in the form [7]

w (.’t, y) = "go e—knan (y):

where w,(y) are eigenfunctions and A, are the eigennumbers of the following spectral problem:

d4w, 2w (2.2)

ds? dy‘" + 4% (d —e%) dy;‘ + Mw, = 0;
di 2.3
wy (£ k) =0, zuim=& )

The spectral: problem (2.2) and (2.3) is singularly perturbed (a small parameter enters as a factor in the high-
est derivative), The asymptotic behavior of spectral problems of this kind as & —~+0 has been studied well [8].
It follows from the results of [8] that a boundary-layer phenomenon occurs near the boundary y =% h since the
boundary condition dwn/dy(:th)-:o is not satisfied in the limit as ¢ —~+0, The shortened problem has the form
d?w,

~ b Mw, =0, w,(xh)=0.

d
dy2

The eigennumberé have an asymptotic ofithe form i, (g) ~ > hﬁ"skﬁ where 7\(12) =0 or an eigennumber of the
E=p

shortened problem, Appropriate eigenfunctions have: an asymptotic of the form



Wn (3, &) = 867 (¥, A (2), €) exp [— &7 A (6) (b — 3)]
+ 65" (g, A (0), ©) exp [— 87" (0) (b + 9)] + 24 (3 ©)

and in the lgp%t Wy (¥, €) =zp(y, 0) or zero, where z,(y, 0) is an eigenfunction of the shortened problem. Near
the ends of the range (—h, h) the convergence is not uniform. In this case the eigennumbers and eigenfunctions
of the shortened problem are determined explicitly as:

A= BEAY2, 2, (5, 0) =1/ 2sin gL,

Therefore, the following deduction can be made from the preceding discussion: As g —+0 the solution of the
boundary-value problem (1.3), (2.1) loses the property of exponentiality of the attenuation, In fact, for a half-
strip boundedby inextensible filaments parallel to the x axis, we obtain the following representation of the solu-
tion in the limit as £ —+0;

-]

w(z, y) = [a,. + M2 (1 — exp (— nmzd*h™)) b N (2.4)

n=1

(ay and b are determined in terms of the values oy and Txy for x=0) from which it follows that w(x, y) will
attenuate exponentially at infinity only for g4(0, y) =0. The circumstance that although the limit solution (2.4)
does not itself attenuate exponentially at infinity, but the estimate

E(2) << E(0) exp [—2kz], (2.5)

where

2E () = | [ (70} + %) dsdys Q= (&, =0, =>1.
Q; :

holds for the strain potential energy, is of interest., In fact,

2E (z) = 3, d ™} exp [— 2nmzd ).

n=1

Since 7Xp [~2n7zd"/ ?n™] = exp [~2r2d!/?h~!] for n=> 1, we hence obtain the estimate (2,5) with the constant k equal
to ra" ’n71,

3. Now, let us investigate the influence of strong anisotropy on the stress attenuation "rate" in the boundary
layer in the following two cases: a)Therectangular domain is extended along the x axis; b) the rectangular
domain is stretched along the y axis but the quite stiff armature is parallel to the x axis, The asymptotic ex-
pansion of the first boundary-value problem of elasticity theory for a quite long orthotropic rectangle is con-
structed in [5].

Let us first examine case a), LetiQ = {(z, p); 0<<z<<a, ly|<hl,y = ka1 In this case, as is shown
in [5], the boundary-layer phenomenon occurs for small v near the sides x=0, a. Here functions of boundary-
layer type are solutions of the problem (1.3), (2.1) for an elastic half-strip. For small v the boundary-layer-

type solution has the representation w = X w, (1) exp (—A,t), where ¢ = z/ay; 1 = y/h; wy(n) and Ay, are
n

determined from the solution of the spectral problem (2.3), (2.4). As has been shown above, the spectral prob-
lem (2.3),(2.4) is singularly perturbed relative to the parameter £¢. Therefore, exponentials of two kinds are

. - MDez Mz (0) W,
present in a boundary-layer-type solutionin exp [— pre j and exp [— P ], since either Ap(€) = An"’ + €Ap
eees OT Ap(g) = 8?\(1) +... .The presence of an exponential of the first kind shows that the "rate" of stress decrease
in the boundary layer in ¥ depends substant1a11y on the ratio £/ v, i.e., on the mutual influence of the domain
size and the degree of material anisotropy. For instance, for & =o(y?) the stresses in the boundary layer will
attenuate very slowly,

Let us consider case b), Let Q={ (x,y), |x] =h, 0<y=a}. It can be shown directly that the exponential-
ity of the boundary-layer attenuation in v is conserved as € —+0, Indeed, in this case the eigenvalues of the
spectral problem
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diw dw
M — ) S o dethdu, = 0, (3.1)

d
Wy (£ 1)=0,§’$(i 1)=0, n=a/h

are determined from the system of equations [5]
vsind, vcos Au — usin A,u cos A0 = 0,

v €0s A,v sin A — u cos Ayu sin A,v = 0,

where
u? = (d — €% + D)/2; v* = (d — e% — D)/2; D = [(d — &%)® — 4de?)'/2

For small € > 0,u* ~d—&?(1 +c)+o(e!), v} ~e?+o(e?). Passing to the limit in (3.2) as & —~+0, we obtain the
relations ApYd=0, tan ApVd=ApYd, to determine A,, from which it follows that for £ =0 the spectral problem
(3.1) has two sets of negative eigenvalues.

Therefore, the qualitative behavior of solutions of boundary layer type are substantially distinct for small
v in these two cases,

4, It must be noted that if the characteristics of the limit equations are not parallel to the half-strip
boundary, then exponentiality of the stress attenuation occurs far from the loaded side. For instance, let Q be
an elastic half-strip bonded by two families of inextensible fibers at the angles +7/4 to thex axis. Upon
passing to the limit in (1.4) as d—+, and replacing the coordinates (& ,7 ), £ =2"1/2(x +y), 1 =2"1/2(y—x) by the
coordinates x, y, the equation for the stress function acquires the form

ozt — 20%w/dz?yt + Pwldyt = 0. : (4.1)

Since the boundary is not a characteristic, the boundary conditions are taken in the form (2.1). As in the case
of an anisotropic medium, under the assumption of self-equilibration of the load on the side x=0, the equation
(4.1) under the boundary conditions (2.1) has the unique solution

W == ngo exp (—-7\.,,1') Wn (y)v
where A, are the eigennumbers, and wy, are the eigen- and associated functions of the following spectral problem

d"wn 2 dzwn
—a = 2Ap——
dy

d
+ Mooy = 0,0, (£ 5) = 0, " (£ 4) = 0.

To determine the eigennumbers, we obtain the equation ’
(2A 1) — sh?(2A k) = 0. (4.2)

Upon making the change of variable z=i2Aph, i =V ~1, it goes over into the equation z? — sin’z =0 which is en-

countered in solving the first boundary-value problem for an isotropic strip [9]. The roots of this latter equation
are complex, and the asymptotic of the roots of large absolute value for the equation z%— sin’z =0 is given by the
relationship

fmw Bt g (221),

Therefore, (4.2) has two series of eigenvalues with Re?\n> 0. As (4.3) shows, attenuation at infinity will
hence occur more slowly than in the isotropic case. As in the anisotropic case also, exponentiality of the atten-
uation is conserved for the strain potential energy of the material.
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